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Disclaimer 

The contents of this report reflect the views of the authors, who are responsible for the facts 

and the accuracy of the information presented herein. This document is disseminated under 

the sponsorship of the U.S. Department of Transportation’s University Transportation Centers 

Program, in the interest of information exchange. The U.S. Government assumes no liability 

for the contents or use thereof. 

 

Connected Vehicle/Infrastructure UTC 

The mission statement of the Connected Vehicle/Infrastructure University Transportation 

Center (CVI-UTC) is to conduct research that will advance surface transportation through 

the application of innovative research and using connected-vehicle and infrastructure 

technologies to improve safety, state of good repair, economic competitiveness, livable 

communities, and environmental sustainability.  

The goals of the Connected Vehicle/Infrastructure University Transportation Center (CVI-

UTC) are: 

 Increased understanding and awareness of transportation issues 

 Improved body of knowledge 

 Improved processes, techniques and skills in addressing transportation issues 

 Enlarged pool of trained transportation professionals 

 Greater adoption of new technology 
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Abstract

Emergency response vehicles (ERVs) frequently navigate congested traffic conditions to reach 

their destinations as quickly as possible. In this report, several efforts performed by the research 

group are described, including micro-simulation, field-testing, and optimization, to determine 

mechanisms for facilitating safe and efficient ERV travel.  

Micro-simulation of a network based on the Northern Virginia Connected Vehicle Test Bed 

examined the effect of a variety of factors on ERV travel time, including the presence of vehicle-

to-vehicle (V2V) communication, traffic volumes, cycle length, ERV speed distributions, non-

ERV speed distributions, and traffic signal preemption. The results indicated that V2V 

communication could reduce travel time for an ERV in congested traffic conditions.  

The research group developed a V2V communication prototype to alert non-ERVs of an 

approaching ERV by triggering a flash of the infotainment system, followed by audible 

instructions to move to the left, move to the right, or stay put. Twelve drivers, aged 25 to 50, 

tested the V2V prototype on the Northern Virginia Connected Vehicle Test Bed during off-peak 

periods. Data from this field test and associated questionnaires were used to investigate reaction 

time to the instructions. The estimated reaction times using the developed model varied from 1.4 

to 5.8 seconds.  

A mixed-integer nonlinear program (MINLP) optimization model was formulated to maximize 

the forward progress of ERVs by sending information to ERVs and non-ERVs within a given 

road segment. A single set of instructions was sent to each non-ERV, assigning them to a 

location out of the ERVs path. Numerical case analysis for a small, uniform section of roadway 

with a limited number of non-ERVs revealed the model is capable of optimizing the behavior of 

non-ERVs to maximize the speed of the ERV. 
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Chapter 1. Introduction 

Emergency response vehicles (ERVs) frequently navigate a variety of traffic conditions during 

an emergency response. ERVs may face traffic conditions that slow response time, such as heavy 

congestion and limited maneuverability. Additionally, ERV drivers must safely handle other 

high-risk scenarios such as moving against oncoming traffic, driving on shoulders, and 

proceeding through red lights. Non-emergency response vehicles (non-ERVs) on the road are 

supposed to yield the right of way to ERVs; however, some drivers may not be aware of an 

approaching ERV. Vehicle-to-vehicle (V2V) communication can help alert non-ERVs to the 

presence of an ERV, the ERV’s desired maneuvers, and how to accommodate the ERV. This 

cooperative behavior could make ERV travel safer and faster.   

Connected and automated vehicle technology is expected to improve driving conditions through 

constant V2V and vehicle-to-infrastructure (V2I) communication. This technology is capable of 

providing real-time information about traffic conditions on the roadway as well as guidance from 

the traffic management center and other eligible sources. Constant exchange of information is 

expected to improve driver awareness, response, efficiency, and comfort while simultaneously 

improving mobility and safety [1-4]. Connected vehicle technology also has the potential to 

improve the safety and efficiency of emergency response. Communication from an ERV to other 

vehicles on the road can provide non-ERV drivers with guiding information that is expected to 

reduce confusion and direct drivers to a complete stop until the ERV has moved past.  

The National Highway Traffic Safety Administration (NHTSA) reported that 368,946 ERVs 

were involved in crashes from 2001 to 2010 [5]. Motor vehicle crashes were the second leading 

cause of death for on-duty firefighters, with almost 30,000 fire apparatus related crashes per year 

[6]. The United States Fire Administration reported almost 100 firefighter deaths each year, with 

20%–25% of firefighter on-duty deaths attributed to vehicle crashes [6]. Current Federal Motor 

Carrier standards exempt emergency workers from the requirement to wear seatbelts when 

responding to an emergency [6], making them more susceptible to injuries in a crash.  

Nearly twice the number of ambulance crashes occurred during emergency operations compared 

to routine operations. For fire trucks, the ratio was about 1.6 to 1 for emergency to routine 

operations, while for police cars, the ratio was only slightly over 1. Police car crashes occurring 

during routine operations are attributed to greater exposure, as police cars are on the road much 

more than other types of ERVs [7]. In fact, transportation related incidents are the leading cause 

of death among police officers, with nearly 36% of on-duty police officer deaths caused by 

vehicle crashes and an additional 10% due to being hit by a vehicle [8]. Between 2004 and 2013, 

the average number of traffic incident related deaths among on-duty police officers was almost 

68 per year. In the case of ambulance related crashes, the numbers are also striking. NHTSA 

reported that, between 1992 and 2011, an annual mean of 4,500 motor vehicle crashes involved 

an ambulance, resulting in 33 fatalities and 1,500 injuries per year. Almost 58% of these injuries 

and fatalities happened during emergency use [9].  
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ERV related crashes pose an even bigger threat to the occupants of the non-ERV involved in the 

crash. Due to the size of the fire trucks and ambulances, other vehicles involved in a crash are at 

higher risk of damage. Ninety percent of fire truck occupants involved in all fire truck crashes 

escaped with no injuries [6]. However, 75% of fatalities involving fire trucks happened to the 

occupants of the non-ERVs involved [6]. In the case of ambulance related crashes, 63% of 

deaths and 54% of injuries between 1992 and 2011 happened to the occupants of other vehicles 

[9].  

Most research associated with ERV-related crashes has focused on the ERV driver, the 

environment, and the health related outcome [10-12]. Research related to crash factors for the 

non-ERV driver is limited. However, the few available studies on non-ERV driver factors 

indicate that visually detecting, or not detecting, the ERV in different driving conditions is one of 

the primary factors contributing to crashes [5].  

The current method of driver warning adopted by fire trucks has seen many iterations throughout 

the last century. Warning systems have evolved from small fire trucks with hand cranked sirens 

to much larger and louder trucks with a plethora of flashing, blinking, wobbling lights and sound 

systems [12]. When an ERV approaches with lights and sirens, drivers of non-ERVs are 

supposed to slow down and pull over on the right side of the road to facilitate the ERV’s 

progress; however, information delivery by siren may cause driver confusion due to the non-

directional nature of sound. Previous research has found sirens to be an extremely limited-

information warning system [13], based on sound only without information on the approach 

direction, the ERV’s intended path, or instructions on actions to take. This kind of warning 

system becomes more problematic in heavily populated areas, where it is more difficult to 

determine which direction the siren is coming from due to lower visual range and more closely-

spaced roads, and more difficult to decide on the appropriate action to take in congested 

situations. These difficulties in information delivery (loud sound only), reception (hearing the 

siren), interpretation, and determining the best action limit the effectiveness of sirens and light 

based warning systems compared to more advanced communication systems.  

In many jurisdictions, ERVs can take advantage of signal preemptions, and in some jurisdictions, 

ERV drivers are allowed to proceed through a stop sign or violate red lights at intersections. 

However, the literature on the actual impact of this kind of signal preemption on ERV service 

time is contradictory [5]. The ERV driver may also be held responsible for collisions caused by 

red light or stop sign violations [14]. This costs local agencies millions of dollars in insurance 

settlements and vehicle repairs [15]. Therefore, there is also an economic incentive for 

developing advanced warning systems.  

Based on the information presented above, a strong argument can be made for the development 

of advanced and effective warning systems for approaching ERVs. Such a system, using V2V 

communication, can help alert drivers to the presence of an ERV, its desired maneuvers, and the 
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best way to get out its path. Advanced warning systems have the potential to initiate cooperative 

behavior among vehicles and may make ERV travel safer and faster.  

Goals and Objectives 

The goal of this study was to facilitate faster and safer ERV travel time. This requires addressing 

multiple aspects of the problem, including variables related to ERVs, non-ERVs, and signal 

control. Accordingly, this study seeks to accomplish the following objectives:  

1. Determine the potential for emergency V2V communication to improve the ERV’s travel.  

2. Determine the conditions under which V2V communication is most beneficial. 

3. Determine the best behavior for non-ERVs in order to facilitate the ERV’s movement. 

4. Determine the ERV’s safest and most efficient path through traffic.  

5. Develop a message prototype for the non-ERVs.  

6. Test the prototype. 

 

The first and second objectives were addressed through micro-simulation of a network based on 

the Northern Virginia Connected Vehicle Test Bed. A variety of factors were considered, 

including the presence of V2V communication, traffic volumes, cycle length, ERV speed 

distributions, non-ERV speed distributions, and whether signal preemption was available. This 

study is described and the results are discussed in Chapter 2. Simulation of Emergency Response 

Vehicle-to-Vehicle Communication. 

The third and fourth objectives were addressed through an optimization model developed for this 

study. Inputs to the model included the current position of the vehicles in the road segment, 

vehicle characteristics, and travel barriers (e.g., roadway edges). In this initial study, non-ERV 

“behavior” was simplified to moving right, moving left, and staying put. The outputs of the 

model were instructions for each non-ERV in the segment of interest, as well as instructions for 

the ERV’s local navigation through traffic. In this study, it was assumed that all vehicles had the 

necessary communication technology. The model is described and the results are discussed in 

Chapter 3. Drivers’ Reaction Times to Vehicle-to-Vehicle Movement Instructions for 

Emergency Response Vehicle Travel Facilitation. 

In order to address the fifth and sixth objectives, the research group worked with Virginia Tech 

Transportation Institute (VTTI) to develop a V2V communication prototype.  In this initial 

study, the prototype was designed for V2V communication between an ERV and non-ERVs. 

This prototype involved a flash of the infotainment system in the non-ERV participants’ 

vehicles, followed by instructions to move to the left, move to the right, or stay put. The research 

group tested the prototype with 12 drivers, aged 25–50, on the Northern Virginia Connected 

Vehicle Test Bed during off-peak periods. Data from this field test were used to investigate 

reaction time to the messages. The communication prototype is described and the results are 

discussed in Chapter 4. Facilitating Emergency Response Vehicle Movement through a 

Transportation Network Link. 
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Organization of the Report 

This report has four main chapters following the introduction: two related to studies conducted, 

one presenting an optimization model and test case, and, finally a concluding summary. Chapter 

2 presents a simulation study that investigated the potential impact of signal preemption and 

emergency V2V communication on the ERV’s travel time. Chapter 3 presents a field study that 

used a prototype V2V communication system to send messages directing real drivers to “move to 

the left,” “move to the right,” or “stay where you are,” and includes a model of reaction time to 

those messages. Chapter 4 presents an optimization model to provide more specific directions to 

non-ERVs to further facilitate ERV movement. Finally, Chapter 5 summarizes the conclusions of 

the individual components and the study as a whole. 
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Chapter 2. Simulation of Emergency Response Vehicle-to-Vehicle 
Communication 

Introduction and Overview 

V2V communication technology is based on the use of short-range wireless (e.g. dedicated short 

range communications [DSRC] or Wi-Fi) technology to transmit messages among vehicles in a 

network. V2V systems consist of an application component that observes traffic conditions, 

triggers the dissemination of information, and suggests consequences to the driving behavior; 

and a communication system component that represents a mobile network of vehicles equipped 

with communication devices and sensors needed to measure road conditions [16]. The 

components of a V2V communication system can be modeled as a mobility block and a 

communication block. The mobility block represents changes in traffic, and the communication 

block models the communication system. The interaction between the application component 

and the mobility and communication blocks represent the overall V2V communication system, 

and can be used to model traffic scenarios with whatever factors are involved in the scenario 

[16].  

A micro-simulation tool was used to test the proposed V2V communication system developed 

for this study. The system was modeled in VISSIM with the Car2x (C2X) API library extension. 

The C2X API allowed a script to access data from simulated connected vehicles; the script also 

simulated sending messages and vehicle reactions to the messages [17]. An application module 

communicated with the VISSIM network (a mobility component that observes any changes in 

traffic), and then transmitted messages through the C2X communication module, allowing the 

ERV to communicate with non-ERVs in the vicinity.  

The V2V communication system was tested on a simulated network based on a small portion of 

the Northern Virginia Connected Vehicle Test Bed. Simulation experiments investigated the 

effects of V2V communication, as well as traffic volumes, cycle lengths, non-ERV speed 

distributions, ERV speed distributions, and signal preemption on the ERV’s travel time. Twenty-

three total experiments were conducted, varying these factors. 

The remainder of this chapter is divided into five subsections. The literature review provides a 

brief overview of selected connected vehicle studies. The next two subsections outline the 

simulation methodology and describe the simulation experiments and how the factors varied. 

The final two subsections present the results of the experiments and provide conclusions and 

future directions of study. 

Literature Review 

The research group reviewed a number of publications related to the impact of V2V 

communication on traffic flow and traffic safety [16, 18-26]. Although most of these 

publications focused on traffic flow, some related traffic flow to traffic safety, and a few related 

traffic flow to ERVs.  
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Chen et al. [19] and Van Arem et al. [27] discussed how V2V technology could be used to 

reduce traffic using Vehicular Ad Hoc networks (VANET) and computer grids. Van Arem et 

al.’s application was in Cooperative Adaptive Cruise Control (CACC) and its impact on traffic 

flow characteristics [27]. Dao et al. focused on utilizing road capacity by optimizing lane 

assignment using V2V communication [21]. Knorr and Schreckenberg [22] discussed the 

influence of V2V communication on peak hour traffic flow. Buchenscheit et al. [18], Bhosale et 

al. [25], and Cetin and Jordan [26] discussed emergency V2V communication and how such 

communication could improve response time and safety. 

Other publications focused mainly on general effects or impacts of V2V on traffic flow, but also 

discussed traffic safety through simulation. For example, Yeo et al. [23] discussed and presented 

microscopic traffic simulation of V2V hazard alerts on a freeway. Mei et al. [24] presented a 

simulation module for studying the impact of V2V on traffic network operations. Finally, Kerner 

et al. [20] created a test bed for wireless vehicle communication in the context of three-phase 

traffic theory. 

Chen et al. [19] proposed a vehicular-based ad hoc networking and computing grid (VGrid), an 

ad hoc networking and computer grid formed by leveraging V2V wireless communication. The 

VGrid used accident alert messages and calculated variable speed limits based on the local 

density of vehicles. The simulation results showed that VGrid reduced speed variance, 

corresponding to more homogenous vehicle behavior in free flow and obstructed-lane scenarios. 

This allowed drivers to make decisions, such as lane adjustments and speed control, at safer 

ranges and with greater precision than possible with human perception alone [19].  

Recognizing that most traffic management systems do not consider vehicle lane organization and 

only regulate traffic flow by controlling traffic signals or ramp meters, Dao et al. [21] developed 

an algorithm for optimization of lane assignments using V2V communication to increase traffic 

throughput and decrease vehicle traffic time. This method was applied in the present study’s 

simulation, where lane assignments based on the ERV’s location within the network were used. 

(Lane assignment messages were disseminated to non-ERVs to assign them to appropriate lanes 

when an ERV approached.) 

While some connected vehicle applications related to safety and traffic flow are close to market, 

emergency V2V communication applications are still being studied. Buchenscheit et al. [18] 

outlined a comprehensive design for an ERV warning system. The system made full use of V2V 

communication technologies. Simulation in this study showed that an ERV communication 

system could increase safety and reduce ERV travel time.  

Bhosale et al. [25], similar to Buchenscheit et al. [18], utilized VANET to disseminate detailed 

information to non-ERVs from an approaching ERV. They introduced an architecture for ERVs 

to be given a high priority during an approach. The proposed architecture included Road Side 

Unit (RSU) communication with an ERV as well (i.e., at traffic signals). According to Bhosale et 
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al. [25], correct, timely, and detailed information messages can aid non-ERVs’ decision making, 

thereby saving valuable time and lives. 

Cetin and Jordan [26] discussed methods to make way for ERVs at oversaturated traffic signals 

using V2V communication. Their approach involved communicating control messages to 

vehicles to change their behavior so that an ERV can maneuver through congested intersections 

as quickly as possible. The authors’ proposed method made use of the shockwave theory to 

determine a critical point where a vehicular queue could be split in one traffic lane so the ERV 

can proceed. This method was simulated and the results showed that the travel time for the ERV 

was shortened significantly. 

In many of the studies, the motivational questions were how many accidents could be avoided, 

which information increased the traffic flow, and to what extent it was increased. It is hard to 

determine the exact impact of V2V communication on traffic and safety since the impacts 

depend on an infinite number of possible traffic situations [16]. This is why it is necessary to 

assess the impacts by utilizing modeling tools to study different traffic situations. Once a model 

is built, the effect of adding V2V technology can be assessed. Such an approach is utilized in the 

present study as discussed in the next section.  

Methodology 

In this study, micro-simulation was used to determine whether V2V communication could 

improve the efficiency (i.e., reduce travel time) of an ERV response during different traffic flow 

conditions. The selected simulation tool was VISSIM. The simulated ERV communicated with 

other vehicles on its path and sent messages that influenced non-ERV drivers’ behaviors. The 

non-ERV drivers received messages that directed their movements when an ERV was 

approaching. For example, the ERV sent messages such as, “move to the right lane” or, “move to 

the left lane.”  

VISSIM Network Description 

The simulated network was based on a portion of the Northern Virginia Connected Vehicle Test 

Bed, particularly the area covering parts of Highway 29 (Lee Highway) and Gallows Road 

(Figure 1).  
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Figure 1. Simulated network based on the Northern Virginia Connected Vehicle Test Bed. 

The network consisted of 390 links and connectors. For each intersection of links, traffic 

volumes were split among routes by a pre-specified percentage. (See Figure 2 as an example.) 

 

Figure 2. Decision routes modeled in VISSIM. 

At appropriate intersections, ring barrier signal controllers were simulated with an ERV signal 

preemption option. Prior to the signalized intersections, detectors were placed to recognize the 

presence of an ERV. Once detected, all signal heads at the intersection changed to red except for 

the ERV’s.  
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As Figure 1 illustrates, there were two major roads: Lee Highway (east and west bound) and 

Gallows Road (north and south bound). On Lee Highway, the speed limit was 40 mph, and on 

Gallows Road, the speed limit was 35 mph. Each of these roads was modeled with its vehicle 

speed distribution. Vehicles entering the network on Lee Highway started at a distribution with 

minimum and maximum values of 36 and 42 mph, respectively. After entering Gallows Road, 

the speed distribution was reduced to minimum and maximum values of 32 and 38 mph. In the 

simulation, however, different scenarios were considered to investigate the effect the vehicle 

speed distribution had on travel time. 

Two parking lots were also modeled. One parking lot was used when the ERV left a location 

(point A), and a second when it arrived at its destination (point B: the hospital). A static route 

was created between these two parking lots to ensure the ERV reached its destination. Finally, 

priority conflict zones were modeled at intersections to avoid collisions. 

For the V2V communication, VISSIM’s API library extension was used. An ERV_V2V 

application class object was constructed to represent a V2V equipped ERV application class. 

This class was derived from VISSIM’s base application class (c2x.ApplicationBase). Once the 

ERV_V2V object was created, it had to be coded to run as a server. After running the application 

object, VISSIM established a connection with this application server once every time step, and a 

function named processTimeStep() was called from the computer code. ProcessTimeStep 

contained the algorithms of the C2X application. When a time step was completed, control was 

given back to VISSIM and the process was repeated in the next time step. In the 

processTimeStep() function, messages were disseminated to C2X equipped vehicles.  

Experimentation with Simulations 

After modeling the network described in the previous section, the research group conducted 

several simulation experiments to observe the variations in travel times based on a particular 

determining factor, such as traffic volume, speed distribution, ERV signal preemption, and traffic 

signal cycle length. Two groups of experiments were conducted: (1) baseline conditions (no V2V 

communication) and (2) the addition of V2V communication. The experimental factors and 

associated assumptions are discussed below.  

Traffic Volumes 

The volume of the network traffic ranged from 6,199–14,696 vehicles per hour. Accurate volume 

counts were not available at all intersections; hence, values were added by a trial and error 

technique. Once an acceptable distribution was achieved, the values for all vehicle input from 

different sources were adjusted by a factor to achieve congestion on the roads. 

Traffic volume in VISSIM (vehicle input) was defined for each link in a time interval in vehicles 

per hour. Usually, vehicles enter a link according to a Poisson distribution. In this simulation 

study, however, vehicle inputs were assumed to be exact or static, which means the number of 

vehicles entering the network was fixed within the specified period as opposed to using a 
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Poisson distribution to facilitate scenario comparison. However, even with static volumes, all 

vehicles assigned to a link may not have entered the network during a simulation period due to 

congestion. Hence, the exact number of vehicles that entered a network during a simulation 

period was written to a file that showed all vehicles in the network and their origination links, 

lanes, types, time entered, and desired speed. These text files were written for each experiment 

and investigated in the results.  

Due to the nature of randomness of generating vehicle input in VISSIM, a random seed was 

used. This parameter initialized the random number generator. Simulation ran with identical 

input and random seeds generated identical results. Using a different random seed changed the 

profile of the traffic arriving and therefore allowed the results to change. In this way, the 

stochastic variation of input flow arrival times could be simulated. For meaningful results, 

VISSIM recommends determining the arithmetic mean based on the results of multiple 

simulation runs with different random seed settings. For each experiment, the results were 

generated using five different random seeds, and travel times and vehicle inputs were averaged. 

As an example, consider an experiment that generates two files: an input vehicle text file as 

explained above and a travel time file for the ERV from its origin to destination. Using five 

random seeds (i.e., 12, 24, 30, 42, and 60), 10 files were generated (five files for vehicle input 

and five for travel times). For the vehicle input files, the total average vehicle input was 

calculated from the five files, and the same was true for the travel time.  

Speed Distributions 

VISSIM allows creating a vehicle composition, which is a combination of vehicles entering the 

network. Each composition consists of different vehicle types. In this study, two vehicle 

compositions were used. One represented ERVs equipped with V2V communication systems. 

The other represented non-ERVs on the road, and included cars and trucks that were also 

equipped with communication systems. Based on the road’s speed limit, a speed distribution was 

selected. For the ERVs, two speed distributions were chosen: 36–42.3 mph and 42.3–48.5 mph. 

For the non-ERVs, three distributions were chosen, each dependent on which street the vehicle 

was on: 29.8–36 mph, 36–42.3 mph, and 32–38 mph. The effects of these distributions on travel 

time were investigated in the experiments. 

Intersection Control 

The signal controller cycle length varied between 90 and 180 seconds for different experiments. 

The signal cycle length was varied to adjust for the best traffic scenario, which was dependent on 

traffic volume at the intersection (i.e., saturation levels). 

As mentioned earlier, traffic signal preemption was used for the ERV. When an ERV was 

detected, signal preemption was applied, giving priority for the ERV to proceed at an 

intersection.  
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Experiments 

Experiments were conducted based on the assumptions and factors discussed above. For 

example, the values of inputs, such as the number of non-ERVs in the network, were varied, 

during a simulation period. These experiments were divided into two groups, one of which 

determined the variation under base or normal traffic conditions, and a second that determined 

the variations under V2V conditions. Each experiment was conducted several times with 

different simulation random seeds as described above, and ERV travel times were calculated as 

the average of the travel times for each random seed.  

Baseline Travel  
In the baseline travel condition, all factors were varied in order to observe the behavior of the 

ERV and non-ERVs. In every experiment, one factor was varied while other factors remained 

constant, and the research group investigated how each of these factors influenced the ERV’s 

travel time. 

The period of simulation varied between 3,600 and 4,200 seconds depending on the traffic 

volume. If the input volume was large, the simulation period was set to 4,200. The ERV entered 

the network mid-way through the simulation to allow the generation of enough traffic in the 

network.  

Nineteen experiments were conducted in the baseline condition. Experiments 1 through 11 were 

used to determine the effect of the cycle length, signal preemption, and traffic volume on the 

ERV’s travel time. Based on the results obtained in these experiments, the VISSIM network 

model was adjusted to represent a real life traffic scenario. For example, the traffic input was 

distributed in a way that formed an approximate uniform distribution of traffic across the 

network. Traffic signal cycles were adjusted to handle this volume. Eleven signal controllers 

were added to the network. One controller was installed at each intersection. Only the light 

where the ERV was approaching turned green; all others turned red. Adjustments were made to 

the routing decision in order to direct traffic toward the path of the ERV so that a congestion 

condition was reached quickly. Speed distributions and volume variation were investigated to 

identify the effects on ERV travel time. 

Emergency Response Vehicle Travel Time Experimentation 
 ERV travel time was influenced by a number of factors. The research group expected the 

addition of V2V communication to improve ERV travel time. The research group conducted four 

experiments (experiments 20–23) using V2V communication. In the experiments, simple 

instructions were sent by the ERV to the non-ERVs with instructions to “move to the right,” 

“move to the left,” or “stay where you are” (Figure 3). Non-ERV movements in the presence of 

the ERV were not optimized.  

In future experiments, the length of the warning distance or message broadcast range (in 

experiments 20-23, the warning distance was set to 328 feet [100 meters]) and warning speed 
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should be included in the simulation. The purpose of the V2V communication in the experiments 

here was to observe the effect of simple messages or commands, as described above, sent via the 

communication module in VISSIM, on the ERV’s travel time without any movement 

optimization. It is expected that optimizations should further improve travel time. 

 

Figure 3. Vehicles moving to the right based on a message received from the ERV. 

 

Results 

The set of experiments examined the travel time of an ERV traveling under normal or base 

conditions and then under the influence of V2V communication. The results of the study 

revealed that V2V communication has a positive influence on travel efficiency, which was 

demonstrated through the improved travel time of an ERV in congestion.  

Table 1 presents the results of experiments 1–11, showing that signal preemption decreased the 

ERV’s travel time, and that increased traffic volume increased travel time. Adjusting the cycle 

length of a traffic controller in accordance with traffic volumes in all directions of travel 

improved travel time. For this network, a cycle length of 120 seconds was determined to be the 

best for non-preemptive cases, reducing ERV travel time, as illustrated in Table 1. 
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Table 1. Results of Experiments 1–11 

Exper

iment 

Simulation 

Period 

(sec) 

Vehicle 

Speed 

Distribution 

(mph) 

ERV Speed 

Distribution 

(mph) 

Volume 

(veh/hr) 

Pre- 

Empt. 

Cycle 

Length 

(sec) 

Travel 

Time 

(sec) 

Preemption’s 

Travel time 

improvement 

(sec) 

1 3600 29.8–36 36–42.3 6199 No 180 819.1  

2 3600 29.8–36 36–42.3 6199 Yes 180 517.2 301.9 (37%) 

3 3600 29.8–36 36–42.3 8233 No 180 1192.2  

4 3600 29.8–36 36–42.3 8233 Yes 180 888.0 304.3 (26%) 

5 4200 29.8–36 36–42.3 10722 No 180 1340.9  

6 4200 29.8–36 36–42.3 10722 Yes 180 1116.4 224.5 (17%) 

7 3600 29.8–36 36–42.3 8233 No 150 842.8  

8 3600 29.8–36 36–42.3 8233 Yes 150 752.1 90.7 (11%) 

9 3600 29.8–36 36–42.3 8233 No 120 710.6  

10 3600 29.8–36 36–42.3 8233 Yes 120 590.7 119.9 (17%) 

11 4200 29.8–36 36–42.3 10722 Yes 120 792.1  

 

Table 2 shows the results of experiments 12–19. As experiments 12–14 demonstrate, increasing 

the traffic volume increases the ERV’s travel time. Changing the cycle length to 90 seconds 

increased the travel time as well, as seen in experiment 15. A 120 second cycle was again found 

to be the most efficient for this network and demand. 

In all of the previous experiments, the speed distribution of all non-ERVs in the network was set 

with minimum and maximum values of 29.8 and 36.0 mph, and the ERV’s speed distribution had 

minimum and maximum values of 36.0 and 42.3 mph. As noted above, the speed limit on Lee 

Highway was 40 mph and on Gallows Road it was 35 mph. In experiment 16, the distribution 

was increased for all non-ERVs on Lee Highway to minimum and maximum values of 36.0 and 

42.3 mph, the same as that of the ERV, and on Gallows Road the speed of all non-ERVs was set 

to minimum and maximum values of 32 and 38 mph. On Gallows Road, the ERV continued with 

the same speed distribution set at the beginning of the experiments: 36.0–42.3 mph. Compared to 

experiment 14, which showed an ERV travel time of 1,141.06 seconds, adjusting the speed 

distribution as in experiment 16 decreased this travel time to 1,074.14 seconds. Repeating 

experiment 16 (in experiment 17) on a less congested network further decreased the travel time. 

Compared to experiment 13, travel time in experiment 17 was decreased from 787.75 to 621.2 

seconds, which was expected due to the increased speed. 
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Experiment 17 was repeated (in experiment 18) with an increase in the ERV’s speed distribution 

from (36.0–42.3 mph) to (42.3–48.5 mph). The travel time was lower, which was, again, 

expected due to the increased speed. An increase in the ERV’s speed was more effective when 

the network was not congested. As illustrated in experiment 18, the travel time decreased 

slightly, from 621.2 to 590.26 seconds. 

Repeating experiment 16 (in experiment 19), with a higher ERV speed distribution, the ERV’s 

travel time was not expected to increase as in experiment 18, due to the fact that the ERV had to 

follow slow non-ERVs in congested conditions. As expected, the travel time decrease was not 

considerable, changing only from 1,074.14 (in experiment 16) to 1,071.64 (in experiment 19), 

with an increase in the ERV’s speed distribution. 

Table 2. Results of Experiments 12–19 

Exper

iment 

 

Simula

tion 

Period 

(sec) 

Non-ERV 

Speed 

Distribution 

(mph) 

ERV Speed 

Distribution 

(mph) 

Volume 

(veh/hr) 

Pre- 

Emption 

Cycle 

Length 

(sec) 

Travel 

Time 

(sec) 

Speed 

Distribution’s 

Improvement 

on ERV 

Travel Time 

(sec) 

12 3600 29.8–36 36–42.3 11222 Yes 120 504.7  

13 3600 29.8–36 36–42.3 13233 Yes 120 787.8  

14 3600 29.8–36 36–42.3 14696 Yes 120 1141.1  

15 3600 29.8–36 36–42.3 13265.4 Yes 90 >1700  

16 3600 36–42.3,  

32–38 

36–42.3 14696 Yes 120 1074.1 66.9 (6%) 

Compared to 14 

17 3600 36–42.3,  

32–38 

36–42.3 13233 Yes 120 621.2 166.6 (21%) 

Compared to 13 

18 3600 36–42.3,  

32–38 

42.3–8.5 13233 Yes 120 590.3 30.9 (5%) 

Compared to 17 

19 3600 36–42.3,  

32-38 

42.3–8.5 14696 Yes 120 1071.6 2.5 (0.2%) 

Compared to 16 

 

The addition of V2V communications into the network reduced the ERV’s travel time. Table 3 

shows the results of experiments 20–23, which demonstrate a reduction in travel time compared 

to experiments 11, 13, 18, and 19. In experiments without V2V communication, the travel times 

were 792.1, 787.8, 590.3, and 1,071.6 seconds respectively. With V2V communication, the 
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travel times in experiments 20, 21, 22, and 23 were reduced to 544.6, 533.0, 472.2, and 859.9 

seconds respectively. 

Table 3. Results of Experiments 20–23 

Exper

iment 

Simula

tion 

Period 

(sec) 

Non-ERV 

Speed 

Distribution 

(mph) 

ERV Speed 

Distribution 

(mph) 

Volume 

(veh/hr) 

Pre- 

Emption 

Cycle 

Length 

(sec) 

Travel 

Time 

(sec) 

V2V’s 

Improvement 

on ERV 

Travel Time 

(sec) 

20 4200 29.8–36 36–42.3 10722 Yes 120 544.6 247.5 (31%) 

Compared to 11 

21 3600 29.8–36 36–42.3 13233 Yes 120 533.0 254.8 (32%) 

Compared to 13 

22 3600 36–42.3; 32– 

38 

42.3–48.5 13233 Yes 120 472.2 118.0 (20%) 

Compared to 18 

23 3600 36–42.3; 32– 

38 

42.3–48.5 14696 Yes 120 859.9 211.8 (20%) 

Compared to 19 

 

Conclusions 

The research group used micro-simulation experiments based on the Northern Virginia 

Connected Vehicle Test Bed to investigate the impact of V2V communication on ERV travel 

time. The experiments examined an ERV’s travel time under base conditions (no V2V 

communication) and under V2V communication conditions. With V2V communication, the ERV 

was able to disseminate messages to surrounding non-ERVs, which influenced non-ERV drivers’ 

behaviors and shortened ERV travel time.  

In addition to V2V communication, the experiments investigated the effects of traffic volumes, 

cycle lengths, speed distributions, and signal preemption on ERV travel time. As expected, 

higher traffic volumes increased travel time. Since the ERV’s speed was limited by other 

vehicles on the road in a congested network, increasing the speed of the ERV in a congested 

network was found to have negligible effects on ERV travel time. Traffic signal preemption 

decreased the ERV’s travel time, allowing it to maneuver faster through intersections. For this 

relatively small network, signal preemption (without V2V communication) improved the ERV’s 

travel time by approximately 1.5–5.0 minutes (11%–37% improvement), depending on traffic 

volumes and cycle lengths. Appropriate signal cycle lengths improved traffic movement and 

mitigated congestion.  

The results of the study revealed that V2V communication could have a positive influence on 

travel time for an ERV in congested traffic conditions. For the simulation network and specified 
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conditions, the benefits were a 20%–32% improvement in the ERV’s travel time over scenarios 

with signal preemption alone. The benefits achieved here should be confirmed in the future with 

additional networks and traffic conditions. In future experiments, the impacts of the message 

broadcast distance, length of the warning distance, and warning speed should be investigated in 

the simulation. In addition, the messages provided in this study were simple. More detailed 

messages may offer additional benefits and should be considered in future studies. 
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Chapter 3. Drivers’ Reaction Times to Vehicle-to-Vehicle Movement 
Instructions for Emergency Response Vehicle Travel Facilitation 

Introduction and Background 

To investigate the potential for V2V communications to effectively guide non-ERVs out of the 

path of an ERV in a timely manner, the research group developed a set of messages that could be 

transmitted from a laptop in a following vehicle (simulating the ERV) to a preceding vehicle 

(simulating the non-ERV). This system was tested with 12 participants on highways and arterials 

in Northern Virginia on the Northern Virginia Connected Vehicle Test Bed (data was missing for 

one of these participants, resulting in 11 valid sets of observations). This data was used to 

explore three specific research questions regarding the relationship between reaction times to 

prototype instructions from ERVs, driving behavior, and speed considerations. Drivers react 

differently to unexpected and expected situations, so variation in drivers’ reaction times can be 

explained in terms of different ranges of reaction times depending on various driving factors and 

conditions. Reaction time in this study was the time from the beginning of the audio messages to 

the first brake application. A stable traffic pattern occurring in light traffic conditions was used 

in this study to negate the effect that different traffic patterns might have had on reaction time 

delays [28].  

The research questions addressed in this study are as follows: 

1. Do kinematic attributes have a statistically significant association with reaction times? 

Vehicle operation variables, such as acceleration and speed, have been incorporated in predictive 

equations of reaction times [29]. In addition, previous studies of reaction times have treated a 

large group of kinematic and non-kinematic variables as independent variables (contributors), as 

outlined in Muttart [30]. From Muttart’s list of 19 factors, three factors were considered—age, 

gender, and average speed—for each model.  

Throttle position in a three-axis system and acceleration were also considered, as the in-vehicle 

data acquisition system (DAS) in the non-ERVs used in this study gathered data on various 

kinematic aspects, and these are not included in most response time prediction literature. 

Accordingly, one contribution of this study is an investigation of the extent to which different 

variables affect reaction times for drivers of non-ERVs operating in a connected vehicle 

infrastructure (CVI) environment. 

2. Can reaction times to ERV messages be predicted as in the case of perceiving invisible objects 

(i.e., audio messages as audible stimuli)? 

According to the American Association of State Highway and Transportation Officials 

(AASHTO) [31], the reaction time for safe stopping distance can be classified into six categories 

with respect to drivers’ perception of the object and stimuli. The six categories are (1) 

illuminated objects and audible stimuli; (2) path intrusions; (3) pedestrians, bicycles and 
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obstacles (in the road); (4) car-following situations; (5) traffic controls; and (6) overall reaction 

time. Reaction time-prediction generally focuses on visible objects ahead, such as barriers or 

pedestrians. The situation for this study is response to audible information. In addition, it appears 

from the literature review (below) that specific studies of the reaction time to ERVs are limited.  

3. Is the reaction time to ERV messages equivalent to 2.7 seconds? 

Much of the literature on reaction time prediction [32], [33], [34] has demonstrated that reaction 

times typically fall in the range between 0.75 and 2.7 seconds depending on the conditions in 

which the experiments have been conducted. Since connected vehicles represent a new driving 

environment, reaction time values could be different from those found in traditional reaction time 

experiments. Accordingly, the hypothesis that the reaction time to the ERV message equals 2.7 

seconds should be tested.   

The remainder of this chapter is divided into six sections. First, an overview of literature related 

to driver reaction times and the potential use of V2V or V2I communication for ERV travel 

facilitation is provided. Then, a description of the study and data collection is provided, followed 

by an overview of the data and testing of whether reaction time to audible stimuli in a CVI 

environment is significantly different than the reaction time of 2.7 seconds traditionally 

recommended by AASHTO. Then, an overview of linear regression and the modeling results is 

presented. The final section provides conclusions and future directions of study. 

Literature Review 

Researchers from various fields, such as psychology and transportation, have studied brake 

reaction times in a number of different contexts. For example, Strayer et al. [35] concluded that 

drivers who engage in complex multitasking have an increased reaction time and crash risk. 

Brake reaction time is typically defined as the time between the moment the driver perceives an 

obstacle in the roadway to the moment the driver responds to the obstacle by applying the brakes 

[31]. Table 4 presents the range of reaction times found in previous studies and the context in 

which they were determined.  
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Table 4. Reaction Times from Previous Studies  

Study Reaction 

Time(s) 

Situation and Stimulus Reaction Time Definition (if 

provided) 

American Association 

of State Highway and 

Transportation Officials 

(AASHTO) [31] 

2.7 A simple, unexpected decision 

and action 

“The interval from the instant that the 

driver recognizes the existence of an 

obstacle on the roadway ahead that 

necessitates braking to the instant the 

driver actually applies the brakes” 

Olson [36], 

Dewar and Olson [37]  

1.5 

(85% to 95% 

of participants) 

Lead vehicles after the first 

appearance of the object or 

condition of concern 

“The time from the first sighting of an 

obstacle until the driver applies the 

brakes” 

Olson and Sivak [38] 0.75 to 1.5 

(85% to 95% 

of participants) 

Leading vehicles “The time from the first sighting of an 

obstacle until the driver applies the 

brakes” 

Sivak et al. [39] 0.75 to 1.5 

(85% to 95% 

of participants) 

A leading vehicle’s anticipated 

brake light  

“The time elapsed from the onset of 

the lead car's brake signal to the time 

of the first detectable onset of the 

brake lights of the subject's car”  

Sivak et al. [40] 0.75 to 1.5 

(85% to 95% 

of participants) 

A yellow foam rubber object 

was placed to the left of the 

vehicle’s path after the subject 

crested a hill 

“The time from the first appearance of 

the object or condition of concern to 

the first vehicle movement in 

response” 

Green [41] 1.5 Surprising and sudden 

stimulus in on-road vehicle 

intrusions (a barrier that 

springs up from a slot) 

“The time it takes for the responder to 

perceive that a signal has occurred and 

to decide on a response” 

Green [41] 1.25 Unexpected stimulus, brake 

lights, traffic signals and car 

following 

“The time it takes for the responder to 

perceive that a signal has occurred and 

to decide on a response.” 

Hooper and McGee [42] 2.3 

(50th 

percentile) 

Stopping-sight distance, lateral 

clearance to sight obstructions 

on horizontal curves, 

intersection sight distance, and 

vehicle change interval 

“The interval between release of the 

accelerator and contact with the brake 

pedal.” 

Sivak [43] 0.75 Car-following situation “The time of the first detectable onset 

of the brake lights of the subject's car”  
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Study Reaction 

Time(s) 

Situation and Stimulus Reaction Time Definition (if 

provided) 

Johansson and Rumar 

[34] 

Median 0.9; 

25% with > 

1.2 

A brief brake application after 

hearing a horn at the side of 

the highway  

“Time from sounding a horn to 

applying the brakes” 

Lerner et al. [44]  1.31 Unexpected stimulus for 

braking  

 

“The interval between release of the 

accelerator and contact with the brake 

pedal” 

Lerner et al. [44]  0.54 The driver is aware that the 

signal to brake will occur 

“The interval between release of the 

accelerator and contact with the brake 

pedal” 

Gundy [45], Moberly 

and Langham [46],  

Muttart [47] 

More than 10 “Gradual or delayed onset” 

(the object is not immediately 

recognized) 

“The time period from when the 

detection threshold is reached to first 

vehicle movement in response” 

 

As seen in Table 4, in general, the reaction times fell in the range of 0.75 to 2.7 seconds. 

However, none of these studies were in the context of reactions to emergency messages or 

directions from an ERV and few (e.g., [34]) were related to audio stimuli. This research focuses 

only on V2V audio messages. Partially-related studies address the impact of V2V 

communication on traffic flow and safety.  

ERV applications are being developed to solve real world problems in the areas of safety and 

traffic flow, and emergency V2V communication applications are still being studied. 

Buchenscheit et al. [18] outlined an ERV warning system that uses V2V communication 

technologies. The study shows that an ERV communication system can increase safety and 

reduce the ERV’s travel time. Talebpour and Mahmassani [48] included the simulated reaction 

times in the stability analysis for traffic flow and used acceleration models to account for the car-

following behavior of the connected vehicles. The reaction times were generated based on the 

assumption that the reaction time of connected vehicles is 50% less than that of regular vehicles 

[49]. Instead of depending on assumptions, this study involves a field study to collect data to 

estimate reaction times. 

Smith et al. [50] estimated connected vehicle drivers’ reaction time to an advisory for making a 

lane change, where the reaction time was the difference between the timestamp when an 

advisory was given via infrastructure-to-vehicle (I2V) and V2I communications and the 

timestamp when the driver completed the task under three different advisories: variable speed 

limit, lane changing, and merging control for evaluating the freeway merge assistance systems. 

The average response time to the variable speed limit advisory was 8.68 seconds (s = 1.86 sec). 
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Participant drivers reacted faster to the lane changing advisory and the merging control advisory, 

with average response times of 8.43 seconds (s = 1.46 sec) and 7.48 seconds (s = 1.67) 

respectively.  

Although ERV reaction times in this study were predicted based on a field test, the work by 

Smith et al. [50] is different from the current study. The three CVI-instrumented vehicles ran on 

the Virginia Smart Road, which was equipped with roadside equipment receiving the visual 

messages via I2V and V2I, whereas this study took place on real-world highways. Moreover, the 

current study used only V2V communication, and reaction times may differ from those found 

using I2V and V2I communications as a result. Some skepticism exists about the practical 

application of CVI-instrumentation because ERV reaction times studied under controlled 

laboratory conditions could vary significantly from those in real-world situations. However, one 

finding that can be adopted from Smith et al. [50] is the development of gap sizes in terms of 

mean headways to account for response times in high, medium, and low traffic conditions. This 

would demonstrate the impact of traffic conditions on drivers’ response behavior, which is worth 

taking into account for predicting reaction times. One more lesson taken from the work is the 

comparison of reaction times across each of the contributing factors, such as gap sizes, genders, 

and age groups.  

Doecke et al. [51] used the reaction times of 0.7 and 1.2 seconds suggested by Green [41] and 

Mohebbi et al. [52] to investigate how many simulated crashes could be mitigated by the 

connected vehicle. The scenarios with 0.7 and 1.2 second reaction times for the operation of the 

connected vehicle were compared to the fully autonomous vehicle in order to investigate the 

sensitivity of the reaction times. This research pointed out the importance of the reaction times 

for the connected vehicle and the benefits of the connected vehicle to the real-world crash and 

impact speed reduction. 

Although Jin and Orosz [53] did not predict connected vehicle-related reaction times, their work 

demonstrated the acceleration-based connected cruise control design in consideration with some 

human parameters received via V2V communication, such as reaction times, speed, distance, 

headway, and acceleration. This paper may offer a good example of how the is dataset useful for 

ERV modeling work, as the relationships between all the data mentioned above, especially 

accelerations and reaction times, can apply to the connected car following model. Thus, field-

testing ERVs’ operation would be useful for collecting practical datasets via V2V 

communication technology. Moreover, the significant effect of acceleration on the driver 

reaction times could be emphasized by regressing the reaction times with acceleration. 

Therefore, the datasets used for this research look promising if regression models must be built 

to predict the reaction times.  

Cetin et al. [26] discussed methods of making way for ERVs at oversaturated traffic signals 

using V2V communication. They proposed an approach involving communicating control 

messages to vehicles to change their behavior so that an ERV can maneuver through a congested 



 22 

intersection as quickly as possible. The method proposed by the authors made use of shockwave 

theory to determine a critical point where a vehicular queue was split in one traffic lane so the 

ERV could proceed. This method was simulated and the results showed that the travel time for 

the ERV was shortened significantly. The authors did not explicitly consider reaction times in 

their paper. 

A gap in the existing literature on V2V communication in ERVs is the lack of field experiments. 

Although the simulation based method is the most popular method in vehicle-to-everything 

(V2X) studies, its practicality may be limited, because in reality, V2V communication is 

associated with many dimensions of transportation, such as drivers’ behavior, traffic 

characteristics, and network configuration. The use of models run with simulated data might be 

flawed without the inclusion of reaction times for applications involving humans, and there are 

few studies that predict reaction times in the presence of ERVs. Field-testing is expected to help 

fill this gap and pave the way for the further estimation of reaction times. 

Data Acquisition 

As an initial prototype, the research group developed a set of messages that could be transmitted 

from a laptop in a following vehicle (simulating the ERV) to a preceding vehicle (simulating the 

non-ERV). This prototype was tested on highways and arterials on the Northern Virginia 

Connected Vehicle Test Bed with participants from the Northern Virginia/Washington, D.C. 

Metropolitan Area. 

The vehicles were equipped with on board equipment with antennae, including a vehicle 

awareness device, an Aftermarket Safety Device, a Modular Communications Platform, a 

network box, and a Software Development Kit together with a NextGEN DAS forward and face 

cameras. In addition to video, the DAS also collected vehicle data (e.g. speed, acceleration, 

braking, yaw). 

Due to the location of the test route, participants were recruited from the Washington, D.C. 

Metropolitan Area through advertisements posted in a Virginia Tech (VT) building located in the 

Northern Virginia area, via VT news, Craigslist, social media, and by word-of-mouth. 

Participants were required to be healthy, U.S. licensed drivers between 25 and 50 years old. They 

had to be U.S. citizens or hold a green card with a social security number and understand spoken 

and written English. They had to be able to drive a vehicle with an automatic transmission 

without special equipment and drive at least two times a week with no more than two driving 

violations or an injurious accident in the past three years.  

Potential participants were asked to provide verbal consent for the screening questions. After 

verbal consent was provided, the researcher administered the eligibility screening over the 

phone. Those who were eligible were scheduled to come to VT at the Northern Virginia Center. 

At least two days prior to the scheduled date, participants were emailed an Informed Consent 

Form. Upon arrival, an experimenter reviewed the form with the participant and answered any 
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questions. A signed copy was retained by the research group, and another copy was given to the 

participant for his/her records. 

Informal hearing and visual tests were performed with participants. To conform to standard use 

of roadways and parking lots, the experimenters informed the participant that upon hearing the 

left/right messages, when safe, they should pull to the appropriate side of the road/parking aisle 

and park in a standard/permissible parking space. 

Participants were acclimated to the vehicles and messages in a low use parking lot prior to 

testing on the roads. An experimenter accompanied the participant in the vehicle at all times. The 

vehicle with the participant was followed by another vehicle (representing the ERV) carrying 

two experimenters—one experimenter drove and one sent the messages from a laptop to the 

participant’s vehicle. The three audio messages were: (1) "Emergency vehicle approaching, pull 

to the left," (2) "Emergency vehicle approaching, pull to the right," and (3) "Emergency vehicle 

approaching, stay where you are." 

Data collection was conducted on the route shown in Figure 1 during weekday off-peak periods 

(10 a.m. to 3 p.m.) and weekend mornings (7 a.m. to noon). Collecting data during off-peak 

periods helped promote safety, reducing traffic movement conflicts while the participant vehicle 

pulled over and made turns before stopping. The participants drove along the study route shown 

in Figure 1, beginning at the Merrifield Fire Station on Lee Highway and going eastbound until 

reaching Gallows Road. At Gallows Road, the route headed south (right hand turn at traffic light) 

until approximately Inova Fairfax Hospital. While traversing the route, the participant driver 

received an audio message preceded by a flashing screen on the infotainment display on the 

dashboard.  

Data Description and Hypothesis Testing 

There were eleven participants (five males and six females) in this study. The average age of all 

the participants was 37. Each participant received two to three audio messages during testing. 

The experimenters collected a total of 30 observations from these tests. The average reaction 

time to the audio messages was 3.39 seconds with a standard deviation of 1.34 seconds. 

The variables examined for this project are shown in Table 5. Acceleration was measured by an 

inertial measurement unit (IMU), which is “a single unit in the electronics module that collects 

angular velocity and linear acceleration data, which is then sent to the main processor” [54]. 

Participant characteristics are also included in the table; the data were self-provided based on 

written questionnaires. 

The modeling variables were tailored for the purpose of the study. All variables were defined 

based on timestamp and brake application prior to maneuvering the vehicle after hearing the 

audio messages, and are defined in the following sections of this report. An overview of the 

variables for the regression modeling is given, along with descriptive statistics, in Table 5. 



 24 

Table 5. Variable Descriptions and Statistics 

Variable Description (Units) Basic Statistics 

Age Age of Participants (years) Mean = 37.1  

SD = 8.0 

Min = 27 Max = 50  

Gen Gender of Participants Female = 53%  

Male = 47% 

Vio Moving violation history of participants Yes = 40% No = 60% 

HearVis Normal hearing and vision abilities of participants Yes = 100% No = 0% 

Autrans Ability to use an automatic transmission Yes = 100% No = 0% 

Acd Auto accident history of participants Yes = 10% No = 90% 

Med Taking Medications Yes = 0% No = 100% 

Freq Frequency of vehicle use 2-4 times a week = 40%  

> 4 times a week = 60% 

Dist Participants’ average daily travel distances  < 5 miles = 0%  

5-10 miles = 20%  

 10-20 miles = 43%  

> 20 miles = 37% 

Window Participants’ preferred vehicle window position while driving  Up = 37% Down = 63% 

Listen Listening to music/radio while driving  Yes = 100% No = 0% 

Loudness Participants’ preference to listen to loud music while driving Yes = 17% No = 83% 

Device Preference to use in-vehicle devices  Yes = 63% No = 37% 

Freqdev Frequency of in-vehicle and personal device use while in the 

vehicle 

Do not use = 37% 

< 1 time a week = 10% 

1-2 times a week = 20% 

3 times or more a week = 33% 

Speed Speed of the participant vehicle when the infotainment system 

screen flashes (meters/second) 

Mean = 14.65 

SD = 3.00 

Speedon Speed of the participant vehicle when the brake is first applied 

(meters/second) 

Mean = 14.41 

SD = 2.65 

Speedoff Speed of the participant vehicle when the driver’s foot is off 

the accelerator (meters/second) 

Mean = 5.67 

SD = 3.90 

AcclX IMU acceleration in lateral direction of the participant vehicle 

when the participant driver receives the message (g) 

Mean = -0.0128 

SD = 0.0374 

AcclY IMU acceleration in longitudinal direction of the participant 

vehicle when the participant driver receives the message (g)  

Mean = -0.0053 

SD = 0.0310 

AcclZ IMU acceleration in vertical direction of the participant vehicle 

when the participant driver receives the message (g) 

Mean = -0.9923 

SD = 0.0234 

AcclTurnX IMU acceleration of the participant vehicle in lateral direction 

versus time when the driver signals to makes a turn (g) 

Mean = -0.0419 

SD = 0.0465 

AcclTurnY IMU acceleration of the participant vehicle in longitudinal 

direction vs. time when the participant driver signals to make a 

turn (g) 

Mean = -0.0016 

SD = 0.0274 

AcclTurnZ IMU acceleration of the participant vehicle in vertical direction 

(up or down) vs. time when the driver signals to make a turn(g) 

Mean = -0.9881  

SD = 0.0243 

Thro Throttle position when the infotainment screen flashes (%) Mean = 10.35 

SD = 8.42 

Throturn Throttle position when applying the brake to make a turn (%) Mean = 12.52 

SD = 4.78 

Overtake Period of time from the moment the audio message is sent to 

the moment the vehicle comes to a complete stop (seconds) 

Mean = 45,826.8 

SD = 25,243.2 

* SD = Standard Deviation 
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Preliminary Analysis  

A number of studies (see Table 4 for examples) involving reaction times starting from the 

moment that an object becomes visible have been previously conducted, but this project involved 

stimuli that were not immediately recognized. For gradual or delayed onset situations, reaction 

times from the first moment of visibility to vehicle response could be over 10 seconds [45-47]. 

From the 30 observations collected, the average reaction times and standard deviation were 

found to be 3.39 and 1.34 seconds, respectively. 

To determine if the reaction times were significantly different from 2.7 seconds, the hypotheses 

to be tested were H0 : µ = 2.7 seconds versus Ha : µ ≠ 2.7. According to results given by Stata 

software, a two-sided t-test with a mean of 2.7 was rejected at the 5% level with a p-value of 

0.001. Further hypothesis testing was performed since the reaction time to invisible objects (i.e., 

audio messages) in the ERV was assumed to be greater than 2.7 seconds. A one-tailed t-test 

denoting that the mean was 2.7 rather than a larger amount was also rejected at the 5% level with 

a p-value of 0.0005. Thus, reaction times for this study case were shown to have exceeded the 

commonly used 2.7 seconds.  

Modeling  

To further explore reaction times, potentially influential factors were investigated through linear 

regression. Typically, predictive equations are created by multiple stepwise linear regression 

based on the selection of variables and the accuracy of the resulting regression as a predictor.  

Multiple linear regression (MLR) models have been successfully utilized for reaction time 

forecasting under different model specifications [43, 55-60]. Although many regression models 

have been developed to select the significant variables for predicting reaction times for scenarios 

involving pedestrians and objects, lights, intrusions, following, traffic controls, and overall [42], 

in this case there were so many variables (i.e., 28 variables), that any correlation between them 

might have affected the final models. Therefore, this research used stepwise regression, where 

the best variable candidates were first identified before moving on to the next step of the 

modeling process to help avoid the burden of regression computation. The second-stage of the 

modeling process was designed to run the models with a set of variables chosen by experts in the 

field.  

During the experiment, each driver received approximately two to three messages requesting that 

they pull the participant vehicle to a safe spot. The limited dataset with 11 participant drivers was 

thereby expanded to a total of 30 observations.  

Linear Regression Results Models  

MLR was implemented with the ordinary least squares method using STATA and R. Because 

there were 28 explanatory variable candidates, it was computationally impossible to build and 

evaluate all possible regression models, so the predictive regression models were estimated 
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based on a small number of subset regression models. Backward and forward stepwise regression 

methods were used to fit the dataset of 28 variables. The use of these methods allowed for 

evaluation of all the trade-offs in fitting the models to the small dataset with a number of variable 

candidates. 

However, as Montgomery et al. [61] point out, stepwise methods, though they offer a quick and 

easy implementation, do not necessarily provide the best models. Based on the large number of 

explanatory variable candidates, the stepwise methods were initially implemented for screening 

purposes, eliminating some negligible variables, and then the remaining variables were 

considered based on the problem environment. This methodology was adapted from a two-stage 

strategy recommended by Montgomery et al. [61].  

The two cutoff parameters of the stepwise methods were specified prior to the implementation. 

Accordingly, “Alpha to enter,” which is the probability of a type 1 error related to entering a 

predictor into a regression model [62], was assigned 0.1 for forward selection and forward 

stepwise methods for this study, while backward elimination and backward stepwise methods 

used the value of 0.15 as “alpha to remove” for representing the probability of a type 1 error 

related to retaining a predictor previously entered into the regression model. 

All 28 explanatory variables were run by the stepwise procedures. The backward stepwise 

method removed the variables with p-values greater than 0.15 from the full model (Model 1) in 

the decreasing order of the p-values as illustrated in Table 6. 

Table 6. P-values of Removing Variables for Backward Elimination 

Variable p-value 

Vio 0.8925 

Age 0.7068 

AcclTurnY 0.6747 

AcclY 0.6288 

Speedoff 0.5879 

Gender 0.3161 

AcclTurnZ 0.1589 

 

The candidate variables were identified using the backward stepwise method, and incorporated 

into Model 1 (shown in Table 7) with the R-squared value of 0.79. The null hypothesis that all 

the coefficients are equal to zero was rejected at a 5% level with a p-value of 0.01. This implied 

that at least one coefficient value was not equivalent to zero. Based on Model 1, predicted values 
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of the reaction times varied from 0.9 to 5.7 seconds, and the average reaction time was 3.4 

seconds.  

Table 7. Results of Model 1 (Generated with Backward Stepwise Regression)  

Variable Coefficient Std. Err. t-statistic P>t 

95% Confidence Interval 

Lower Upper 

Constant -36497.31 12867.49 -2.84 0.013 -64095.33 -8899.29 

Acd -2560.12 1310.81 -1.95 0.071 -5371.52 251.28 

Symp 1415.93 668.16 2.12 0.052 -17.12 2848.99 

Freq 4178.08 1382.75 3.02 0.009 1212.37 7143.79 

Dist 3833.09 971.78 3.94 0.001 1748.83 5917.35 

Window 4882.43 1518.98 3.21 0.006 1624.55 8140.30 

Loudness -5521.81 1706.57 -3.24 0.006 -9182.04 -1861.58 

Freqdev -1390.28 515.98 -2.69 0.017 -2496.95 -283.60 

Speed -443.34 282.02 -1.57 0.138 -1048.214 161.53 

Speedon 561.67 334.94 1.68 0.116 -156.71 1280.05 

AcclY 15946.46 9593.63 1.66 0.119 -4629.85 36522.76 

AcclZ -16824.52 10428.83 -1.61 0.129 -39192.14 5543.097 

AcclTurnX -15344.4 6919.43 -2.22 0.044 -30185.1 -503.69 

Thro 66.20 21.32 3.10 0.008 20.47 111.94 

Throturn -123.73 59.35 -2.08 0.056 -251.03 3.57 

Overtake -0.03 0.00 -3.17 0.007 -0.0444 -0.0085 

 

The forward stepwise method yielded the results shown in Table 8 with the R-squared value of 

0.61. The hypothesis βLoudness = βSpeedon = βSpeedoff = βThro = 0 where βs are the set of the 

coefficients of the regression model (Model 2) was rejected at the 5% level with a p-value of < 

0.01. This implied that at least one of the independent variables had some predictive effect.  
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Table 8. Results of Model 2 (Generated with Forward Stepwise Regression) 

Variable Coefficient Std. Err. t-statistic P>t 

95% Confidence Interval 

Lower Upper 

Constant 1764.84 1083.38 1.63 0.116 -466.42 3996.09 

Loudness -919.98 454.93 -2.02 0.054 -1856.92 16.96 

Speedon 133.50 65.36 2.04 0.052 -1.1139 268.12 

Speedoff -146.94 46.20 -3.18 0.004 -242.09 -51.79 

Thro 66.47 20.80 3.20 0.004 23.64 109.2991 

 

This model was built by entering each variable that had a p-value less than “Alpha to enter = 

0.1” into the regression model. The first variable entered was Speedoff, with the p-value of 

0.0014. The variables Thro, Speedon, and Loudness followed. The p-values of the significant 

variables entered are illustrated in Table 9.  

Table 9. P-values of Entering Variables for Forward Stepwise Methods 

Variable p-value 

Speedoff 0.0014 

Thro 0.0044 

Speedon 0.0999 

Loudness 0.0540 

 

Model 2, which was generated by the forward selection and forward stepwise methods, showed 

some candidate variables for the final model. This is because some models built later from the 

set of candidate variables as recommended by the backward elimination were statistically less 

significant than those resulting from forward methods, even though the backward elimination 

method appeared to be better than forward methods in terms of R-squared values. As the results 

in Figure 4 show, the forward method provided a better model than Model 1, with average 

predicted reaction times of 3.4 seconds. Moreover, a no-intercept regression model (Model 3) 

was fitted for these final variables, providing the R-squared value of 0.94 and the same average 

reaction time (3.4 seconds). The model and statistics are demonstrated in Table 10. 
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Table 10. Results of Model 3 (No Intercept; Generated with Forward Selection) 

Variable Coefficient Std. Err. t-statistic P>t 

95% Confidence Interval 

Lower Upper 

Loudness -902.15 469.04 -1.92 0.065 -1866.27 61.97 

Speedon 231.17 26.85 8.61 0.000 175.97 286.37 

Speedoff -110.49 41.68 -2.65 0.013 -196.17 -24.80 

Thro 76.84 20.42 3.76 0.001 34.88 118.81 

 

It is relatively easy to misuse the no-intercept model because the relationship is quite different 

near the origin than it is in the region containing data for the model [61]. However, the 

interpretation of this model makes sense; the reaction times cannot be predicted with zero values 

of all significant variables.  

 

Figure 4. Predicted reaction times for regression models 1–3. 

A comparison of the predicted and actual values among the three models previously discussed is 

shown in the scatter plot in Figure 4. Model 1, which was built using the backward stepwise 

regression method, resulted in the predicted reaction times falling within the range of 0.9 and 5.7 

seconds with a standard deviation of 1.2 seconds. The predicted values were mostly located 

within two standard deviations from the average reaction times. Model 2, using the forward 
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methods, estimated the reaction times ranging from 1.6 to 5.5 seconds with a standard deviation 

of 1.04 seconds. Reaction times predicted by Model 3 (no intercept model) varied from 1.4 to 5.8 

seconds, with a standard deviation of 1.14 seconds. The average predicted reaction times were 

relatively the same for all models. The last two models had more predicted reaction times beyond 

the upper bound, with a + 2 standard deviation value from the first model.  

Conclusions 

This study investigated drivers’ reaction times to a V2V message. Data came from a field study 

where a participant vehicle was followed by a study vehicle acting as a simulated ERV in off-

peak conditions. The “ERV” sent messages to the participant vehicle informing the driver that an 

ERV was approaching and directing him/her to the left or right. Drivers’ reaction times were 

calculated as the time between when the message began and the time when the driver applied 

his/her foot to the brake. Since there were multiple messages per driver, the 11 participants 

generated 30 observations for reaction times. 

Linear predictive models were built to estimate reaction times to the ERV’s messages based on 

the field test’s dataset. The forward stepwise linear regression resulted in four statistically 

significant variables: Loudness (preference for listening to loud music while driving), Speedon 

(speed at the time the brake was applied), Speedoff (speed at the time the drivers took their feet 

off the accelerator), and Thro (throttle position at the time the message was received). The 

predicted reaction times to V2V movement instructions developed by the no intercept model 

(Model 3) fell in the range of 1.4 to 5.8 seconds. The upper bound reaction time was 

approximately two times greater than the 2.7 second reaction time identified in the previous 

literature. The reaction time range for the field test was wider than that found in the literature, 

which makes sense, as this is a new technology to which most drivers are not yet accustomed.  

The lower bound of the estimated values for Model 2 (generated with forward stepwise 

regression and including an intercept) was not close to the average reaction time of 0.75 seconds 

(0.28 seconds of standard deviation) found by Johansson and Rumar [34] when the brake was 

applied after hearing a horn at the side of the highway. All four of the explanatory variables for 

Model 2 were statistically or scientifically significant. It is reasonable that drivers’ reaction times 

to the audio messages (negative coefficient) could be negatively associated with listening to loud 

music while driving (these drivers have lower reaction times). Drivers accustomed to radio 

voices may be better attuned to responding to verbal cues. In addition, Speedon and Speedoff 

variables—the participant vehicle’s speed when the brake was applied and the participant 

vehicle’s speed when the foot was removed from the accelerator shortly after hearing the V2V 

messages—were included in the reaction time prediction model (Model 2). The Speedoff 

variable had a negative influence, indicating that while traveling at a higher speed, reaction time 

was lower (faster), perhaps suggesting that drivers more comfortable with higher speeds have 

faster reaction times. However, the Speedoff term should not be completely treated in isolation, 

as the other term, Speedon, was also included in Model 2. The time at which the brake was 
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applied was not long after the foot was removed from the accelerator. The Speedon term had a 

positive effect on reaction time. If the speeds were the same at both instances, the coefficients 

would partially cancel each other out. Throttle position (%) caused an increased reaction time. 

In the future, this study could be expanded for other traffic conditions in different surroundings, 

such as heavy traffic on arterials and free-flow conditions. Moreover, the simulation could be 

used in conjunction with the field experiment to predict reaction times. The simulation method 

may be helpful for more complicated traffic conditions, such as the propagation of V2V 

communication and car-following scenarios.  
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Chapter 4. Facilitating Emergency Response Vehicle Movement through 
a Transportation Network Link 

Introduction and Background 

In this study, the research group developed a mathematical program and solution approach that 

leveraged V2V communication to maximize the speed of an ERV through an idealized section of 

roadway. 

 

Most recent studies on ERV travel facilitation focused on automatic crash notification, 

dispatching, dynamic routing, and signal preemption through an existing network [63-67]. These 

studies depended on real-time sensors or crowd-sourced traffic condition data to determine the 

shortest possible route for minimum service time. They did not consider the impact of the ERV 

on the non-ERVs on the road. Adaptive traffic signals to facilitate emergency service have also 

received some research attention. Some studies have also proposed different methods of moving 

non-ERVs out of the path of the ERV by means of V2V communication [68]. Most of these 

studies did not optimize the desired behavior of the non-ERV for a required movement of the 

ERV. In this study, non-ERV behavior was optimized to maximize the forward progress of 

ERVs. This approach considered initial speed, initial position, size, and deceleration capabilities 

of the non-ERVs and the geometry of the transportation network downstream.  

The rest of this chapter is organized into five sections. First, a brief literature review is provided 

on the current state of ERV travel facilitation research using CVI. Next, the formulation of the 

optimization model is presented and the solution approach is described. Then the input data used 

for the optimization is presented along with the results from the optimization model for a small 

case study. Finally, limitations of this approach are discussed and some direction to improve 

ERV facilitation is provided.  

Literature Review 

Connected and automated vehicle research has gained momentum in recent years. Facilitation of 

ERV travel is a part of the associated growing body of literature. V2V and V2I communication 

have been leveraged to provide support during emergency situations. Proposed examples 

include, but are not limited to, automatic crash notification systems [69-71] and using wireless 

sensor networks to provide emergency navigation to individuals inside buildings [72-75]. The 

use of geographic information systems (GIS) has also been explored [76-78]. For example, 

Kejun et al. designed an emergency accident rescue system for a freeway using a GIS [76].  

V2V and V2I systems, along with automation, have also begun to be applied for ERVs. For 

example, the Federal Highway Administration’s Response, Emergency Staging, 

Communications, Uniform Management, and Evacuation (RESCUME) program [79], aims to 

provide automatic crash notification, responder staging with dynamic routing, incident zone 

protection, and evacuation support. Jordan et al. proposed an approach based on kinematic wave 

theory to split vehicle queues at signalized intersections using V2V communication to facilitate 
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ERV movement through the intersections [68]. Although not specifically stating the use of V2V 

or V2I, Moussa [80] used a cellular automata (CA) approach for lane changing to facilitate the 

movement of ERVs through a two-lane highway.  

In terms of incorporating ERVs into automated environments, Dresner and Stone [81-83] 

considered intersections while Toy et al. [84] worked with links. Toy et al. [84] proposed two 

objectives: “to ensure rapid ERV transit” within the system and “to promote ERV transit through 

stopped” traffic. In the latter case, non-ERVs need to move out of the ERV’s way. Their work 

assumed no dedicated shoulders for ERV use (and did not show how any type of shoulder would 

be used), focused on highways, and used platoon-based approaches [84]. A limit to the existing 

work [68, 80, 84] is the lack of consideration of shoulder use.  

Finally, the general problem of path clearance for ERVs on arterials using wireless 

communications has been examined by several researchers, (e.g., [18, 26, 68, 85-90]), primarily 

through simulation or at the conceptual level. For example, Buchenscheit et al. [18] presented a 

VANET-based ERV warning system, which informs non-ERVs of approaching ERVs, as well as 

the ERV’s desired route. While existing works provide information propagation (warnings) to 

non-ERV drivers, they typically do not optimize non-ERV movement to allow ERVs to quickly 

reach their destinations.  

Optimization Formulation & Heuristic Solution  

The proposed formulation for ERV facilitation in a CVI environment maximizes the speed of the 

ERV through a pre-specified road segment. The current states (speed, location) and physical 

properties of each vehicle in front of the ERV as well as geometric properties of the 

transportation network were assumed known for the purposes of this study. These data served as 

inputs that could be leveraged through information exchange via wireless networks. The model 

proposed in this study divided the road segment into cells with a fixed length and width, with the 

number of lateral cells depending on the width of the roadway section under consideration.  

The optimization model produced a set of instructions that to be sent to the non-ERVs to stop at 

certain positions downstream, which they could reach safely and with minimal conflict with 

other vehicles. Depending on the ERV’s position at the time the instructions were sent and its 

destination, an intra-link path was selected by assigning the ERV continuous longitudinal cells 

over the path. The instructions sent to the non-ERVs moved them out of the ERV’s path. The 

formulation was a Mixed-Integer Non-Linear Program (MINLP) where the objective function 

and some constraints were non-linear. The objective function maximized the speed of the ERV 

through the link.  

Additional constraints reduced lane-changing conflicts among non-ERVs. The positional 

assignment took place on a uniform roadway segment with no additional vehicles entering or 

leaving the section during the ERV’s movement. The problem setup closely resembled the CA 

system that has been used in traffic simulation (see for example [91–113]). The CA model was 
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also implemented in transportation analysis simulation system (TRANSIMS) software [114]. For 

the purpose of optimization, a longitudinal cell size of 21 feet was used, which is less than the 

7.5 meters used in TRANSIMS. The lateral cell size used was 10 feet. The optimization 

framework could also handle different cell sizes.  

The optimization for this study took place on a homogenous roadway section. The numbers of 

variables and equations in the optimization model vary with the length and geometry of the 

roadway section being optimized. The number of integer variables was quite high, even with a 

short roadway segment, and also varied with the number of non-ERVs on the optimized section. 

The preliminaries of the problem setup, variable notation, objective function, constraints, and 

pre-processing involved are explained below.  

Preliminaries  

The optimization formulation required a specific network setup and vehicle labeling. To convert 

the regular network and traffic conditions to those needed for the formulation, the following 

tasks were performed and are illustrated in Figure 5: 

 Vehicles downstream of the ERV and in the broadcast range were identified and 

numbered, with the lowest number being closest to the ERV.  

 Link and roadway shoulders forward of the ERV were divided into cells the size of the 

regular vehicle plus buffers. A link was terminated when the ERV reached its destination 

or turned  at an intersection. 

 

In Figure 5, below, the ‘X’ direction represents forward motion and the ‘Y’ direction represents 

the lateral movement (e.g., for lane change). 

 ‘X’ cells are labeled with 1 being closest to the ERV and numbers increasing with 

distance.  

 ‘Y’ cells are labeled in ascending order from bottom to top.  

 

Figure 5. Discretization of roadway network. 
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The notation used in the formulation is as follows. 

Sets:  

x Index of cell number in longitudinal direction from ERV 

y  Index of cell number in lateral direction. (Starts from right.) 

j 
Non-ERV number index from the ERV. (If in same x cell then the left vehicle 

has lower index.) 

Variables:  

Variable 

Notation 

Variable 

Type 
Variable Description 

𝑤
𝑥𝑦

 Binary 
Variable that takes the value 1 if ERV was assigned to cell (x, y), 0 

otherwise. (Cell was part of ERV’s path during the time step.) 

𝑠𝑥𝑦 Integer 
Variable denoting the speed of the ERV at cell (x, y). (Cells per unit 

time.) 

𝑑𝑘
𝑥𝑦

 Binary 

Variable that takes the value 1 if the ERV was given instruction k at 

cell (x, y). k = 1 means move right, k=2 means go straight, k=3 

means move left. 

𝑉𝑗
𝑥,𝑦

 Binary 
Variable that takes the value 1 if vehicle j was assigned to cell (x, y) 

and 0 otherwise. 

Parameters:   

Data 

Notation 

Default 

Value  
Data Description 

𝛼𝑥𝑦 n/a 
Intersection Indicator. 𝛼𝑥𝑦 =1 if cell (x ,y) was in an intersection, 0 

otherwise. 

𝑌𝑥 n/a Number of lateral cells at position x. 

L 21’ Length of cell in longitudinal direction. 

𝑡𝑟 2.5 sec Reaction time. 

𝜎𝑗 
36-40 

fps 
Speed of vehicle j at beginning of time step. 
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𝛿𝑗 5 fps-2 
Deceleration of vehicle j. (Constant from time of reaction until full 

stop.) 

𝑆𝑓𝑟𝑒𝑒 3 
Max speed of the ERV on the link. (Discrete values – cells per unit 

time.) 

𝑆𝑚𝑖𝑛 1 
Min speed of the ERV on the link. (Discrete values – cells per unit 

time.) 

N n/a 
Number of longitudinal cell required to accommodate the ERV. 

(Discrete values.)  

LL n/a Number of longitudinal cells in broadcast range. 

𝑥𝑗
′ n/a Current (before assignment) x index of vehicle j. 

𝑥𝑗
′′ n/a 

Longitudinal x index that the vehicle j needs to reach before coming 

to a full stop. 

 

Formulation  

The nonlinear objective function was the summation of the product of the assignment variable 

and integer speed variable. The summation was done only on those x indices just in front of the 

ERV at any moment.  

 

Max 𝑧 = ∑ ∑ 𝑠𝑖(𝑁+1),𝑦𝑤𝑖(𝑁+1),𝑦

𝐿𝐿
𝑁+1

−1

𝑖=1

𝑌𝑥

𝑦=1

 (1) 

The objective function was subject to the following constraints. 

Each cell could be occupied by at most one vehicle, as indicated in equation (2). 

 𝑤𝑥,𝑦 +∑𝑣𝑗
𝑥𝑦
≤ 1

𝑗

, ∀(𝑥, 𝑦) (2) 

Vehicle assignment at an intersection was prohibited, as reflected in equation (3). 

 𝛼𝑥𝑦∑𝑣𝑗
𝑥𝑦

𝑗

= 0, ∀(𝑥, 𝑦) (3) 

Constraint (4) ensured a passing lane for the ERV.  
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 ∑∑𝑣𝑗
𝑥𝑦

𝑗𝑦

< 𝑌𝑥, ∀𝑥 (4) 

Vehicles could only be assigned to cells they could reach based on vehicle dynamics. For 

simplicity, constant deceleration was assumed for all vehicles. For fractional longitudinal cell 

size, the cell requirement was rounded to the nearest larger integer value as indicated in equation 

(5). This formulation also minimized conflicts between other vehicles. Equation (6) ensured the 

cells to which the non-ERV was assigned were within three longitudinal cells beyond the 

minimum requirement calculated in equation (5). The formulation restricted cells available for 

assignment of non-ERVs and thereby reduced the feasible space. This simplification improved 

the calculation time by reducing feasible space rather than using all feasible cells. However, the 

cutoff value of three longitudinal cells was chosen arbitrarily and should change depending on 

traffic density and speed. Future analysis should test different cutoff values for different traffic 

conditions.  

Pre-processing 𝑥𝑗
′′ = 𝑥𝑗

′ + 𝑐𝑒𝑖𝑙

(

 
 
(𝑡𝑟𝜎𝑗 + 0.5

𝜎𝑗
2

𝛿𝑗
)

𝐿

)

 
 
,  (5) 

 ∑ ∑𝑣𝑗
𝑥𝑦

𝑌𝑥

𝑦=1

𝑥𝑗
′′+3

𝑥=𝑥𝑗
′′

≥ 0, ∀𝑗 (6) 

Passing among non-ERVs was limited by equation (7) so that vehicles had minimal potential 

conflicts. 

 ∑𝑣
𝑗′
𝑥′𝑦

𝑦

<∑𝑣𝑗
𝑥𝑦

𝑦

, ∀𝑥′ < 𝑥, 𝑗′ > 𝑗, ∀𝑦 (7) 

Equation (8) ensured continuity of ERV motion.  

 ∑𝑤𝑥𝑦

𝑦

= 1, ∀𝑥 (8) 

Equation (9) ensured that one set of instructions was provided to the ERV at each x at the 

completion of the previous maneuver. 

 

∑∑𝑑𝑘
𝑥𝑦

3

𝑘=1𝑦

= 1, ∀𝑥 = 𝑁 + 1,2(𝑁 + 1), 3(𝑁 + 1), … (9) 
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For forward motion, the assumption was that the ERV needed N+1 cells in the same y open if it 

moved forward. The formulation expressed in equation (10) was non-linear. 

 

𝑑2
𝑥𝑦
∑ ∑𝑣𝑗

𝑖𝑦

𝑗

𝑁+1

𝑖=𝑥+1

= 0 (10) 

For lane changing, the assumption was that the ERV needed N-1 forward cells in the same y and 

free cells in the adjacent lane.  

 

𝑑1
𝑥𝑦
( ∑ ∑𝑣𝑗

𝑖𝑦

𝑗

𝑁−1

𝑖=𝑥+1

+ ∑ ∑𝑣𝑗
𝑖,𝑦−1

𝑗

𝑥+𝑁+1

𝑖=𝑥+𝑁−1

) = 0, ∀𝑦 > 1 (11) 

 

𝑑3
𝑥𝑦
( ∑ ∑𝑣𝑗

𝑖𝑦

𝑗

𝑁−1

𝑖=𝑥+1

+ ∑ ∑𝑣𝑗
𝑖,𝑦+1

𝑗

𝑥+𝑁+1

𝑖=𝑥+𝑁−1

) = 0, ∀𝑦 < 𝑌𝑥 (12) 

The ERV was not permitted to move in a direction if there was no cell lane in that direction. 

Equation (13) was for the right portion of the roadway and equation (14) was for the left. 

 𝑑1
𝑥1 = 0, ∀𝑥 (13) 

 𝑑3
𝑥𝑌𝑥 = 0, ∀𝑥 (14) 

The ERV’s initial entry into the optimization part of the link was based on the assumption that its 

initial movement involved a forward only motion. The y’ was given as input. These values 

(equations 15 and 16) came from the initial conditions (input): 

 𝑤𝑥′𝑦
′
= 1, ∀𝑥′ = 1,… ,𝑁 + 1 (15) 

 𝑤𝑥′𝑦 = 0, ∀𝑥′ = 1,… ,𝑁 + 1, ∀𝑦 ≠ 𝑦′ (16) 

Equations (17-23) guided the ERV’s movement beyond the initial movement.  

 𝑤𝑥+𝑖,𝑦 = 𝑤𝑥,𝑦, ∀𝑥 = (𝑁 + 1), 2(𝑁 + 1), 3(𝑁 + 1)… ; ∀𝑖 = 1,… ,𝑁 − 1; ∀𝑦

= 1,… , 𝑌𝑥   
(17) 

 𝑑1
𝑥,𝑦
≤
𝑤𝑥,𝑦+𝑤𝑥+𝑖,𝑦−1

2
, ∀𝑥 = (𝑁 + 1), 2(𝑁 + 1), 3(𝑁 + 1)… ; ∀= 𝑁 − 1,𝑁, 𝑁 +

1; ∀𝑦 = 2,… , 𝑌𝑥  
(18) 

 𝑑1
𝑥,𝑦
≥ 𝑤𝑥,𝑦 + 𝑤𝑥+𝑖,𝑦−1 − 1, ∀𝑥 = (𝑁 + 1), 2(𝑁 + 1), 3(𝑁 + 1)… ; ∀𝑖 = 𝑁 −

1, 𝑁,𝑁 + 1; ∀𝑦 = 2,… , 𝑌𝑥  
(19) 
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 𝑑2
𝑥,𝑦
≤
𝑤𝑥,𝑦+𝑤𝑥+𝑖,𝑦

2
, ∀𝑥 = (𝑁 + 1), 2(𝑁 + 1), 3(𝑁 + 1)… ; ∀𝑖 = 𝑁, 𝑁 + 1; ∀𝑦 =

1, … , 𝑌𝑥  
(20) 

 𝑑2
𝑥,𝑦
≥ 𝑤𝑥,𝑦 + 𝑤𝑥+𝑖,𝑦 − 1, ∀𝑥 = (𝑁 + 1), 2(𝑁 + 1), 3(𝑁 + 1)… ; ∀𝑖 =  𝑁,𝑁 +

1; ∀𝑦 = 1,… , 𝑌𝑥  
(21) 

 𝑑3
𝑥,𝑦
≤
𝑤𝑥,𝑦+𝑤𝑥+𝑖,𝑦+1

2
, ∀𝑥 = (𝑁 + 1), 2(𝑁 + 1), 3(𝑁 + 1)… ; ∀𝑖 = 𝑁 − 1,𝑁,𝑁 +

1; ∀𝑦 = 1,… , 𝑌𝑥 − 1  
(22) 

 𝑑3
𝑥,𝑦
≥ 𝑤𝑥,𝑦 + 𝑤𝑥+𝑖,𝑦+1 − 1, ∀𝑥 = (𝑁 + 1), 2(𝑁 + 1), 3(𝑁 + 1)… ; ∀𝑖 = 𝑁 −

1, 𝑁,𝑁 + 1; ∀𝑦 = 1,… , 𝑌𝑥 − 1  
(23) 

If the ERV was going straight, it could potentially increase its speed. Equation (24) set the 

maximum speed while equation (25) ensured a minimum speed. Speeds during the execution of a 

maneuver were constant. Speeds were discrete and in cells per unit time. So, for a 21-foot cell 

size, the speed varied as an integer multiple of 21 fps.  

 𝑠𝑥,𝑦 ≤ 𝑆𝑓𝑟𝑒𝑒, ∀ 𝑥 = 1, (𝑁 + 1), 2(𝑁 + 1),… ; ∀𝑦 (24) 

 𝑠𝑥,𝑦 ≥ 𝑆𝑚𝑖𝑛, ∀ 𝑥 = 1, (𝑁 + 1), 2(𝑁 + 1),… ; ∀𝑦 (25) 

 𝑠𝑥+(𝑁+1),𝑦 ≤ 𝑠𝑥,𝑦 + 𝑑2
𝑥,𝑦
, ∀ 𝑥 = 1, (𝑁 + 1), 2(𝑁 + 1),… ; ∀𝑦 (26) 

 𝑠𝑥+(𝑁+1),𝑦 ≤ 𝑠𝑥,𝑦 + (𝑌𝑥 − ∑ ∑ 𝑣𝑗
𝑥,𝑦

𝑗𝑦 − 2), ∀ 𝑥 = 1, (𝑁 + 1), 2(𝑁 +

1),… ; ∀𝑦  
(27) 

In equation (27), if (Yx – sum of other vehicles) was 1, then one was subtracted from the current 

speed. If there was more than one lateral cell, 0 or a value of at least 1 was added, the limit of 

which was set by other constraints. The minimum speed constraint prevented the speeds from 

reaching 0 or becoming negative. 

Solution Approach 

Knowing that scheduling, routing and selection problems are typically NP-Hard/NP-Complete 

problems, the ERV facilitation problem can also be proven to be NP-Hard/NP-Complete [115]. 

Moderate or large sized problems are difficult to solve to optimality. In this optimization, if a 

1,000-foot broadcast range was used, the number of longitudinal cells was 40, and the number of 

lateral cells depended on the number of travel lanes and the shoulder width on both sides of the 

road. If the number of lateral cells was assumed to be three, then the total number of variables for 

ERV assignment was 40*3=120. The number of variables was the same for ERV speed and the 

three types of instructions sent to the ERV. The variables required for non-ERV assignment were 

dependent on the number of vehicles as well as the cells required for them to come to a full stop. 

If the vehicle that was assumed to be at the end of the broadcast range needed an additional 20 
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cells in the longitudinal direction, then the number of variables for non-ERVs was 

(40+20)*3=180 times the number of vehicles in the broadcast zone. This high amount of 

variables made finding a true optimal solution difficult.  

This high number of variables took any general-purpose optimal solution algorithm like 

enumeration or tree search out of consideration for this problem, as the computational time 

required was too high. Some special purpose heuristics could have been considered for obtaining 

the solution. But even those algorithms would have become computationally ineffective after a 

certain problem size. Another method was to set the search space to a minimum, which would 

limit the set of feasible solutions. However, this would also decrease the number of feasible 

solutions, with the risk that no feasible solution would exist in some instances. Therefore, 

heuristics and meta-heuristics, balancing computational time and the search space, were logical 

choices for solving the problem to near-optimality. For this study, a genetic algorithm (GA) was 

chosen as the heuristic algorithm.  

GAs, also known as evolutionary computation, were first introduced by John Holland in 1975 

[116]. He proposed search methods based on the process of natural evolution. Since its inception, 

evolutionary computation has gone through four major paradigms: genetic algorithm, genetic 

programming, evolutionary strategies and evolutionary programming [117]. Non-linearity of the 

objective function and constraints made GA a suitable solution approach for this MINLP 

problem. However, for a large-scale difficult problem, GA has exhibited some problems in 

generating solutions as a result of premature convergence in suboptimal regions [118]. To avoid 

premature convergence in the solution approach used in this study, a high crossover fraction and 

low mutation rate were used to ensure a large search space in each iteration.  

Numerical Case Analysis 

In the setup for this study, non-ERV positions were provided as input data. Other associated 

parameters like current speed, deceleration capability, and reaction time could also be used as 

inputs. For the purpose of the optimization model’s initial testing, current speeds were randomly 

generated. The speeds of non-ERVs were varied between 25 and 30 mph. A constant reaction 

time and deceleration capability were used. As the number of variables increased with the 

increase of broadcast range, it was necessary to choose a reasonable length for obtaining a near 

optimal solution within a reasonable time. Initial testing of the model with 45 longitudinal cells, 

three lateral cells, and 20 non-ERVs yielded unsatisfactory results. The GA converged 

prematurely and could not find a solution where all the constraints were satisfied. To reduce the 

number of variables, an idealized very short segment was chosen. For the results illustrated here, 

six longitudinal cells of ERV assignment were used, and three lateral cells were used.  

The number of longitudinal cells for non-ERVs was higher than the ERV’s because of the cell 

requirement for coming to a full stop. It was also assumed that there was no non-ERV 

downstream of the six cells assigned to the ERV. The location, speed and longitudinal cell 

requirements are shown in Table 11. Vehicles were moving from left to right. In the table, all the 
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cells on the right (Y=1) are empty as they physically signify the shoulder of the road. Vehicle 

position was encoded as binary: 1 means there was a vehicle at the corresponding cell. 

Otherwise, the cell was coded as 0. Vehicle speed was randomly generated with values between 

25 and 30 mph. The speed was then converted to feet per second to calculate the number of cells 

required to come to a full stop (Equation 5).  

Table 11. Input Data 

Non-ERV Location 

 X 1 2 3 4 5 6 

Y 

3 0 1 0 1 0 0 

2 1 0 0 1 0 1 

1 0 0 0 0 0 0 

  Non-ERV Speed (FPS) 

Y 

3 0 26 0 28 0 0 

2 27 0 0 28 0 29 

1 0 0 0 0 0 0 

  Longitudinal Cell Requirement for Stopping 

Y 

3 0 9 0 10 0 0 

2 9 0 0 10 0 10 

1 0 0 0 0 0 0 

 

The programming setup was done in MATLAB. MATLAB’s GA solver was designed to solve 

programs in standard form. In the case of integer variables, MATLAB’s GA solver could not 

handle non-linear or linear equality. The standard integer model that could be optimized by using 

MATLAB is shown below:  

 Objective,  Min, f(x)  

 Subject to,   [A]*x ≤ b  (Linear inequality constraint) 

   C(x) ≤ d  (Linear inequality constraint) 

   LB ≤ x ≤ UB (Upper and lower bound of variables) 

 To convert the model to the standard formulation shown above, the following steps were taken: 
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 A greater than or equal to linear inequality was converted to a less than inequality 

constraint by multiplying the equation by -1. 

 An equality constraint was converted to two sets of inequalities. The [A]*x = b 

constraint was converted to [A]*x ≤ b + eps, and [A]*x ≥ b – eps, where eps denotes 

a very small number near the order of 10-16. As all the variables are integer, this 

conversion ensured enforcement of equality constraints. Then the greater than or 

equal to constraint was converted to a less than or equal to formulation using the 

previous methodology. 

 Non-linear equality constraints were also converted to inequality constraints as 

described above. 

 

As the non-ERVs needed to travel some distance to come to a complete stop, the number of cell 

requirements was larger than the assignment variable for the ERV. In the testing stage, the 

longitudinal cell number required for the vehicle with the highest index with some buffer was 

used as the cell number for non-ERVs. Cells with x = 11–12 index were used as an intersection. 

As the vehicles were restricted from stopping at the intersection, non-ERVs were not assigned to 

these cells. The ERV size or the N value in the formulation was assumed to be 2. The ERV 

started at the middle lane. Optimization runtime for the small size problem varied between 45–55 

seconds.  

Results 

Several runs were made for the small, idealized section. Following the characteristics of 

population heuristics, the output was different for different runs. One of the best solutions is 

illustrated in this report. The output of the optimization for the variables associated with the ERV 

is listed in Table 12. There was no condition enforced on the end position of the ERV. As any 

lane change was penalized with speed reduction, the model kept the ERV in the same lane. As a 

result, the speed was maximized and only one instruction was sent to the ERV. In the model 

formulation, a number of variables were declared but not used in either the objective function or 

the constraints. MATALB’s GA algorithm generated an initial solution for all the variables. As 

some variables were not used in any formulation, these initially generated values were kept in the 

solution. These variables’ outputs were filtered by post processing. Only the relevant output 

variables in feasible space were kept.  
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Table 12. ERV Assignment and Instruction 

  ERV assignment 

 X 1 2 3 4 5 6 

Y 

3 0 0 0 0 0 0 

2 1 1 1 1 1 1 

1 0 0 0 0 0 0 

  ERV Speed 

Y 

3 0 0 0 0 0 0 

2 0 0 3 0 0 3 

1 0 0 0 0 0 0 

  Instruction (Move Right) 

Y 

3 0 0 0 0 0 0 

2 0 0 0 0 0 0 

1 0 0 0 0 0 0 

  Instruction (Go Straight) 

Y 

3 0 0 0 0 0 0 

2 0 0 1 0 0 0 

1 0 0 0 0 0 0 

  Instruction (Go Left) 

Y 

3 0 0 0 0 0 0 

2 0 0 0 0 0 0 

1 0 0 0 0 0 0 

Note: Marked cells are the starting cells of the ERV. 

The variables for the non-ERV assignment are shown in Table 13. Vehicles were prohibited 

from stopping at intersections. Accordingly, although the intersections were within the feasible 

range for the first and second vehicle, they were assigned beyond that point. Conflict between 

the non-ERVs was also minimized. Vehicles closer to the ERV were assigned to closer 

downstream locations than vehicles further away from the ERV. This ensured that no overtaking 

maneuvers occurred among the non-ERVs.  
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Table 13. Non-ERV Assignment 

  First Vehicle 

 X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Y 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

  Second Vehicle 

Y 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  Third Vehicle 

Y 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

  Fourth Vehicle 

Y 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  Fifth Vehicle 

Y 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Note: Marked cells are intersection. 
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Conclusion 

The recent growth in wireless-enabled traffic networks and subsequent connected and automated 

vehicle technology offers opportunities for detection and acquisition of high fidelity traffic data 

that can be leveraged to develop more efficient and safe traffic control strategies. Though 

significant literature exists about how automated and connected vehicle systems can improve 

traffic flow, research on facilitation of ERV travel is more limited. Previous studies typically do 

not optimize the route, speed, and desired behavior of non-ERVs simultaneously. In this study, 

desired non-ERV behavior was optimized and the full extent of roadway geometry was used. 

The formulation used in this study was a non-linear mixed integer program containing a large 

number of variables. To solve the formulation, a GA heuristic with post-processing was 

employed to remove declared variables that were never used. 

Numerical case analysis for a small, uniform section of roadway with a limited number of non-

ERVs revealed the capability of the model to optimize the behavior of non-ERVs to maximize 

the speed of the ERV. Conflicts among non-ERVs were explicitly limited by the constraints. 

However, to extend the optimization for a real network with a reasonable broadcast range, pre-

processing was required to reduce the number of variables. Pre-processing made it possible to 

generate the minimum number of variables required for optimizing with minimal time 

requirements. Extending the formulation with pre-processed variable definitions is the subject of 

future research. Reduced numbers of variables will improve computational time.  

To be applicable for practical use, data capture, model formulation, optimization and instruction 

delivery should be done nearly instantaneously. Due to the high number of variables and 

subsequent computational time, the model in its current format is not applicable for immediate 

use. Future research should focus on refining the formulation and improving the solution 

approach or developing a methodology of mining the best instructions and route information 

from pre-optimized values. To accomplish the latter, a database of optimized values for wide 

ranging traffic conditions (vehicle position, speed, origin/destination of the ERV etc.) could be 

developed first so that data mining technology can be used to leverage the values for near 

instantaneous information delivery. Wireless network infrastructure requirements for this can 

also be a future research topic.  
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Chapter 5. Conclusions and Recommendations 

The goal of this study was to facilitate ERVs’ safe and rapid travel to their destinations. This 

required addressing multiple facets of the problem, including the ERV, passenger vehicles (non-

ERVs), and signal control. The research group pursued the following objectives:  

1. Determine the potential for emergency V2V communication to improve the ERV’s travel 

time. 

2. Determine the conditions under which the communication is most beneficial. 

3. Determine the best behavior for non-ERVs in order to facilitate the ERV’s movement. 

4. Determine the best path for the ERV through traffic.  

5. Develop a message prototype for the non-ERVs.  

6. Test the prototype. 

 

The first objective was addressed through micro-simulation of a network based on the Northern 

Virginia Connected Vehicle Test Bed. A variety of factors were considered, including the 

presence of V2V communication, traffic volumes, cycle length, ERV speed distributions, non-

ERV speed distributions, and whether signal preemption was available. The simulation 

experiments examined the ERV’s travel time under base conditions and under the influence of 

V2V communication. The ERV was able to communicate with non-ERVs on its path and 

disseminate messages that influenced other drivers’ behaviors.  

As expected, higher traffic volumes increased travel time. Traffic signal preemption decreased 

the ERV’s travel time, allowing it to maneuver more quickly through intersections. For this 

relatively small network, signal preemption (without V2V communication) improved the ERV’s 

travel time by approximately 1.5–5.0 minutes (11–37% improvement), depending on traffic 

volumes and cycle lengths. Further, appropriate signal cycle lengths improved traffic movement 

and mitigated congestion. Finally, increasing the desired speed of the ERV had only small effects 

on its travel time in a congested network. At high levels of congestion, the ERV’s speed was 

limited by other vehicles on the road. The results of the study revealed that V2V communication 

could have a positive influence on travel time for an ERV in congestion. For the simulation 

network and specified conditions, the benefits were a 20–32% improvement in the ERV’s travel 

time over scenarios with signal preemption alone.  

The third and fourth objectives were addressed through an optimization model developed for this 

study. Inputs to the model included the current position of the vehicles in the road segment, 

vehicle characteristics, and travel barriers (e.g., roadway edges). In this initial study, non-ERV 

“behavior” was simplified to moving right, moving left, and staying put. Since the maneuvering 

occurred in a small section of the network, the “path” pertained to the path through traffic within 

the localized section. The outputs of the model were instructions for each non-ERV in the 

segment of interest as well as for the ERV’s local navigation through non-ERV traffic. In this 

study, it was assumed that all vehicles had the necessary communication technology. The 

formulation used in this study was a non-linear mixed integer program that contained a large 
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number of variables. To solve the formulation, a GA heuristic with post-processing was 

employed to remove declared variables that were never used. Numerical case analysis for a 

small, uniform section of roadway with a limited number of non-ERVs revealed the capability of 

the model to optimize the behavior of non-ERVs to maximize the speed of the ERV. Conflicts 

among non-ERVs were explicitly limited by the constraints.  

For the fifth and sixth objectives, VTTI employees developed a V2V message prototype based 

on input and messages provided by the research group. In this initial study, the prototype was 

designed for communication between an ERV and non-ERVs. This prototype involved a flash of 

the infotainment system in the participant’s vehicle, followed by instructions to move to the left, 

move to the right, or remain stationary. The research group tested the prototype with 12 real 

drivers (data was obtained from 11), aged 25–50, on the Northern Virginia Connected Vehicle 

Test Bed during off-peak periods. Data from this field test were used to investigate reaction time 

to the messages informing drivers that an ERV was approaching and directing them to the left or 

right or to remain where they were. Drivers’ reaction times were calculated as the time between 

when the message began and the time when the drivers applied their feet to the brake. There 

were multiple messages per driver, and the 11 participants with data generated a total of 30 

observations for reaction times. 

Linear regression models were built to estimate the reaction times to the ERV’s messages. The 

stepwise linear regression models 2 and 3 resulted in four statistically significant variables: 

Loudness (preference for listening to loud music while driving), Speedon (speed at the time the 

brake was applied), Speedoff (speed at the time the drivers take their feet off the accelerator), 

and Thro (throttle position at the time the message was received), and the predicted reaction 

times to V2V movement instructions fell in the range of 1.4 to 5.7 seconds. The upper bound on 

reaction time of the ERV field test was approximately two times greater than the 2.7 seconds 

established in the previous literature. The reaction time range for the field test was also wider 

than that found in the literature, which stands to reason, as this is a new technology to which 

most drivers are not yet accustomed.  

The lower bound of the estimated values for Model 2 (generated with forward stepwise 

regression) was not close to the average reaction time of 0.75 seconds (0.28 seconds of standard 

deviation) found by Johansson et al. [34] when the brake was applied after hearing a horn at the 

side of the highway—a much simpler communication than the V2V messages used in this study. 

All four of the explanatory variables for Model 2 are statistically or scientifically significant 

variables. It is reasonable that drivers’ reaction times to the audio messages could be negatively 

associated (decreased reaction time) with the familiarity of listening to loud music while driving, 

and drivers accustomed to radio voices may be better attuned to responding to verbal cues. In 

addition, Speedon and Speedoff variables—the speed of the non-ERV at the time when the brake 

was applied, and the non-ERV’s speed when the foot was removed from the accelerator shortly 

after hearing the V2V messages—were included in the reaction time predicting model. The 

Speedoff variable had a negative influence, indicating that while traveling at a higher speed, the 
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reaction time was lower (faster), perhaps suggesting that drivers more comfortable with higher 

speeds have faster reaction times. However, the Speedoff term should not be treated completely 

in isolation, as the other term, Speedon, was also included in the model, and the time at which 

the brake was applied was not long after the foot was removed from the accelerator. The 

Speedon term had a positive effect on reaction time. The Thro variable, throttle position (%), 

also increased reaction time; i.e., higher values of Thro were associated with longer reaction 

times. 

Future Directions 

Ample opportunities for future work in emergency V2V communication exist. These 

opportunities involve research directions such as using simulation, refining optimization 

approaches, developing communication systems, and field tests. 

In terms of simulation, the benefits achieved here should be confirmed in the future with 

additional networks and traffic conditions. In future experiments, the impacts of the length of the 

warning distance and warning speed should be investigated in the simulation. The messages 

provided in this study were simple. More detailed messages, such as those developed for the 

optimization portion of this study, may offer additional benefits and should be considered in 

future studies. 

The mathematical program developed for this study was computationally complex. Due to the 

high number of variables and subsequent computational time, the model in its current format is 

not applicable for immediate use. To extend the optimization to a real network with a reasonable 

broadcast range, pre-processing must be done to reduce the number of variables. Pre-processing 

would generate only the minimum number of variables required for optimizing with an 

associated minimal time requirement.  

To be applicable for practical use, data capture, model formulation, optimization and instruction 

delivery should be done nearly instantaneously. Future research could focus on developing a 

methodology of mining the best instructions and route information from pre-optimized values. 

To accomplish this, a database of optimized values for wide ranging traffic condition (vehicle 

position, speed, origin/destination of the ERV, etc.) could be developed first so that data mining 

technology can be used for leveraging such near instantaneous information delivery. Wireless 

network infrastructure requirements for this can also be a future research topic.  

This study only used one method of message delivery in the field test. Other approaches could be 

investigated in the future. Cognitive processing and reaction times should be considered and 

tradeoffs among approaches should be evaluated, including safety impacts. Future field tests 

should consider a variety of traffic conditions and roadways and larger numbers of participants 

of all driving ages. 
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